Quantum Monte Carlo calculations of the equation of state of neutron matter with chiral EFT interactions

Ingo Tews

(Institute for Nuclear Theory Seattle)

In collaboration with A.Gezerlis, J. Carlson, S. Gandolfi, J. Lynn, A. Schwenk, E. Kolomeitsev, J. Lattimer, A. Ohnishi

Extracting Bulk Properties of Neutron-Rich Matter with Transport Models in Bayesian Perspective, April 4th, 2017, FRIB-MSU, East Lansing

Outline

Motivation

> Chiral effective field theory e.g. Epelbaum et al., PPNP (2006) and RMP (2009)

- Systematic basis for nuclear forces, naturally includes many-body forces
- Very successful in calculations of nuclei and nuclear matter
- Quantum Monte Carlo method
 - Very precise for strongly interacting systems
 - Need of local interactions (depend only on $r = |\mathbf{r}_i \mathbf{r}_j|$)

Local chiral interactions Gezerlis, IT, et al., PRL & PRC (2013, 2014, 2016)

• Can be constructed up to N²LO

> Results for neutron matter, light nuclei, and n-alpha scattering

S and L constraints from lower bound of neutron matter

To obtain the equation of state we need:

- A theory for the strong interactions among nucleons
 - → Phenomenological forces or Chiral EFT
- An ab initio method to solve the many-body Schrödinger equation
 - → Many-body Pert. Theory (MBPT), Quantum Monte Carlo (QMC), Coupled Cluster, ...

Motivation

Good agreement with experimental constraints

Motivation

Status:

- Sizeable uncertainty for chiral EFT calculations of neutron matter
- Quantum Monte Carlo: very precise method for strongly interacting systems
- Phenomenological interactions provide a good description of light nuclei and nuclear matter, but it is not clear how to systematically improve their quality, no uncertainty estimates

QMC calculations with local chiral EFT interactions

Chiral effective field theory for nuclear forces

Systematic expansion of nuclear forces in low momenta Q over breakdown scale Λ_b :

- Pions and nucleons as explicit degrees of freedom
- Long-range physics explicit, short-range physics expanded in general operator basis, couplings (LECs) fit to experiment

Separation of scales:

Expand in powers of $\left(\frac{Q}{\Lambda_h}\right)^{\nu} \sim \left(\frac{1}{3}\right)^{\nu}$

- Power counting scheme
- Can work to desired accuracy with systematic error estimates

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

Chiral effective field theory for nuclear forces

Many-body forces:

- Crucial for nuclear physics
- Natural hierarchy of nuclear forces
- Fitting: NN forces in NN system (NN phase shifts), 3N forces in 3N/4N system (Binding energies, radii)
- Consistent interactions: Same couplings for two-nucleon and manybody sector

INSTITUTE for NUCLEAR THEORY

Solve the many-body Schrödinger equation

$$H |\psi\rangle = -\frac{\partial}{\partial \tau} |\psi\rangle, \qquad \tau = it$$

$$\psi(R,\tau) = \int dR'^{3N} \langle R| e^{-(T+V)\tau} |R'\rangle \psi(R',0)$$

Basic steps:

Choose trial wavefunction which overlaps with the ground state

$$|\psi(R,0)\rangle = |\psi_T(R,0)\rangle = \sum_i c_i |\phi_i\rangle \rightarrow \sum_i c_i e^{-(E_i - E_0)\tau} |\phi_i\rangle$$

- \blacktriangleright Evaluate propagator for small timestep $\Delta \tau$, feasible only for local potentials
- Make consecutive small time steps using Monte Carlo techniques to project out ground state

$$|\psi(R,\tau)\rangle \to |\phi_0\rangle \quad \text{for} \quad \tau \to \infty$$

More details: Carlson, Gandolfi, Pederiva, Pieper, Schiavilla, Schmidt, Wiringa, RMP (2015)

Particle in a 1D box, solution:

$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

Basic steps:

Choose parabolic trial wavefunction which overlaps with the ground state Animation by Joel Lynn, TU Darmstadt

Particle in a 1D box, solution:

$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, in preparation.

To evaluate the propagator for small timesteps $\Delta \tau$ we need local potentials:

$$\langle r' | \hat{V} | r \rangle = \begin{cases} V(r) \, \delta(r - r'), & \text{if local} \\ V(r', r), & \text{if nonlocal} \end{cases}$$

Chiral Effective Field Theory interactions generally nonlocal:

- > Momentum transfer $q \rightarrow p' p$
- > Momentum transfer in the exchange channel $k = \frac{1}{2}(p + p')$
- Fourier transformation: $q \rightarrow r, k \rightarrow$ Derivatives

Sources of nonlocalities:

Usual regulator in relative momenta

$$f(p) = e^{-(p/\Lambda)^{2n}}$$

k-dependent contact operators

Solutions:

Choose local regulators:

$$V_{\text{long}}(r) \rightarrow V_{\text{long}}(r) \left(1 - e^{-(r/R_0)^4}\right)$$
$$\delta_{R_0}(\mathbf{r}) = \alpha e^{-(r/R_0)^4}$$

Use Fierz freedom to choose local set of contact operators

Local chiral interactions

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

> Leading order
$$V^{(0)} = V_{\text{cont}}^{(0)} + V^{\text{OPE}}$$

 \blacktriangleright Pion exchange local \rightarrow local regulator

 $f_{\rm long}(r) = 1 - \exp(-r^4/R_0^4)$

Contact potential:

$$V_{\text{cont}}^{(0)} = \alpha_1 \mathbf{1} + \alpha_2 \sigma_1 \cdot \sigma_2 + \alpha_3 \tau_1 \cdot \tau_2 + \alpha_4 \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2$$

\rightarrow Only two independent (Pauli principle)

$$V_{\rm cont}^{(0)} = C_S \mathbf{1} + C_T \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$

$$f_{\rm short}(r) = \alpha \exp(-r^4/R_0^4)$$

 Choose local set of short-range operators at NLO (7 out of 14)

$$\begin{split} V_{\text{cont}}^{(2)} = & \gamma_1 q^2 + \gamma_2 q^2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \gamma_3 q^2 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ & + \gamma_4 q^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ & + \gamma_5 k^2 + \gamma_6 k^2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \gamma_7 k^2 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ & + \gamma_8 k^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ & + \gamma_9 (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\mathbf{q} \times \mathbf{k}) \\ & + \gamma_{10} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\mathbf{q} \times \mathbf{k}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ & + \gamma_{11} (\boldsymbol{\sigma}_1 \cdot \mathbf{q}) (\boldsymbol{\sigma}_2 \cdot \mathbf{q}) \\ & + \gamma_{12} (\boldsymbol{\sigma}_1 \cdot \mathbf{q}) (\boldsymbol{\sigma}_2 \cdot \mathbf{q}) \\ & + \gamma_{13} (\boldsymbol{\sigma}_1 \cdot \mathbf{k}) (\boldsymbol{\sigma}_2 \cdot \mathbf{k}) \\ & + \gamma_{14} (\boldsymbol{\sigma}_1 \cdot \mathbf{k}) (\boldsymbol{\sigma}_2 \cdot \mathbf{k}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \,. \end{split}$$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

- Choose local set of short-range operators at NLO (7 out of 14)
- Pion exchanges up to N²LO are local
- This freedom can be used to remove all nonlocal operators up to N²LO

Gezerlis, IT, Epelbaum, Gandolfi, Hebeler, Nogga, Schwenk, PRL (2013)

Gezerlis, IT, Epelbaum, Freunek, Gandolfi, Hebeler, Nogga, Schwenk, PRC (2014)

LECs fit to phase shifts

NN-only calculation:

QMC: Statistical uncertainty of points negligible

➢ Bands include NN cutoff variation $R_0 = 1.0 - 1.2 \text{ fm}$

Order-by-order convergence up to saturation density

Benchmark of MBPT

Gezerlis, IT, Epelbaum, Freunek, Gandolfi, Hebeler, Nogga, Schwenk, PRC (2014)

Many-body perturbation theory:

- \blacktriangleright Excellent agreement with QMC for soft potentials ($R_0 = 1.2$ fm)
- Validates perturbative calculations for those interactions

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ... Inclusion of leading 3N forces:

Three topologies:

- \succ Two-pion exchange V_C
- \succ One-pion-exchange contact V_D
- \succ Three-nucleon contact V_E

Only two new couplings: c_D and c_E .

Fit to uncorrelated observables:

- Probe properties of light nuclei: ⁴He E_B
- > Probe T=3/2 physics: n- α scattering

QMC with chiral 3N forces

Usually Two-pion-exchange most important in PNM: c_1 term: Tucson-Melbourn S-wave interaction $c_{3,4}$ term: Fujita-Miyazawa interaction

Usually V_D and V_E vanish in neutron matter: c_D due to spin-isospin structure, c_E due to Pauli principle see also Hebeler, Schwenk, PRC (2010)

Only true for regulator symmetric in particle labels like commonly used nonlocal regulators, not for local regulators

IT, Gandolfi, Gezerlis, Schwenk, PRC (2016)

• Only three-nucleon two-pion exchange $\sim c_1$ and c_3

- > Auxiliary-field diffusion Monte Carlo:
 - > NN + 3N TPE forces
 - $> R_0 = 1.0 1.2 \text{ fm}$
 - $\succ R_{3N} = 1.0 1.2 \text{ fm}$
- > 3N cutoff dependence small
- ▶ TPE 3N contributions \approx 1 2 MeV at n_0

smaller than for nonlocal regulators

Fit c_E and c_D to ⁴He binding energy and n- α scattering

Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, PRL (2016)

- Less repulsion from TPE, but additional contributions due to shorter-range 3N forces
- After inclusion of all contributions we find agreement of various approaches (different way of uncertainty estimate, see EKM, PRC 2015)

- Chiral interactions at N²LO simultaneously reproduce the properties of A ≤ 5 systems and of neutron matter (uncertainty estimate as in E. Epelbaum et al, EPJ (2015))
- Commonly used phenomenological 3N interactions fail for neutron matter Sarsa, Fantoni, Schmidt, Pederiva, PRC (2003)

Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, in preparation.

Chiral interactions at N²LO simultaneously reproduce the properties of A≤5 systems and of neutron matter (uncertainty estimate as in E. Epelbaum et al, EPJ (2015))
 Commonly used phenomenological 3N interactions fail for neutron matter Sarsa, Fantoni, Schmidt, Pederiva, PRC (2003)

IT, Krüger, Hebeler, Schwenk, PRL (2013) Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, PRL (2016) Chiral EFT forces with the Quantum Monte Carlo method:

- Energies agree well with MBPT result within uncertainty bands
- Many-body uncertainty negligible
- uncertainties comparable but QMC band only at N²LO and includes also hard interactions

Improve local chiral interactions:
 Develop N³LO potentials

Next step: N³LO

Improve local chiral interactions:

- > Develop maximally local N³LO potentials
- Inclusion of Delta degree of freedom

Problem: only 8 out of 30 possible operators local

$$V_{\text{cont}}^{(4)} = D_{1} q^{4} + D_{2} q^{4} \tau_{1} \cdot \tau_{2} + D_{3} q^{4} \sigma_{1} \cdot \sigma_{2} + D_{4} q^{4} \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2}$$

$$+ D_{5} k^{4} + D_{6} k^{4} \tau_{1} \cdot \tau_{2} + D_{7} k^{4} \sigma_{1} \cdot \sigma_{2} + D_{8} k^{4} \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2}$$

$$+ D_{9} q^{2} k^{2} + D_{10} q^{2} k^{2} \tau_{1} \cdot \tau_{2} + D_{11} q^{2} k^{2} \sigma_{1} \cdot \sigma_{2} + D_{12} q^{2} k^{2} \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2}$$

$$+ D_{13} (q \times k)^{2} + D_{14} (q \times k)^{2} \tau_{1} \cdot \tau_{2} + D_{15} (q \times k)^{2} \sigma_{1} \cdot \sigma_{2} + D_{16} (q \times k)^{2} \sigma_{1} \cdot \sigma_{2} \tau_{1} \cdot \tau_{2}$$

$$+ \frac{i}{2} D_{17} q^{2} (\sigma_{1} + \sigma_{2}) \cdot (q \times k) + \frac{i}{2} D_{18} q^{2} (\sigma_{1} + \sigma_{2}) \cdot (q \times k) \tau_{1} \cdot \tau_{2}$$

$$+ \frac{i}{2} D_{19} k^{2} (\sigma_{1} + \sigma_{2}) \cdot (q \times k) + \frac{i}{2} D_{20} k^{2} (\sigma_{1} + \sigma_{2}) \cdot (q \times k) \tau_{1} \cdot \tau_{2}$$

$$+ D_{21} q^{2} \sigma_{1} \cdot q \sigma_{2} \cdot q + D_{22} q^{2} \sigma_{1} \cdot q \sigma_{2} \cdot q \tau_{1} \cdot \tau_{2}$$

$$+ D_{25} q^{2} \sigma_{1} \cdot k \sigma_{2} \cdot k + D_{26} q^{2} \sigma_{1} \cdot k \sigma_{2} \cdot k \tau_{1} \cdot \tau_{2}$$

$$+ D_{27} k^{2} \sigma_{1} \cdot k \sigma_{2} \cdot k + D_{28} k^{2} \sigma_{1} \cdot k \sigma_{2} \cdot k \tau_{1} \cdot \tau_{2}$$

$$+ D_{29} ((\sigma_{1} + \sigma_{2}) \cdot (q \times k))^{2} + D_{30} ((\sigma_{1} + \sigma_{2}) \cdot (q \times k))^{2} \tau_{1} \cdot \tau_{2}$$

$$(34)$$

But: work in progress!

Now: Constraints on S and L from lower bound of neutron matter energy

Kolomeitsev, Lattimer, Ohnishi, IT, arXiv:1611.07133

S and L constraints from lower bound of neutron matter energy

Kolomeitsev, Lattimer, Ohnishi, IT, arXiv:1611.07133

Empirical observation:

Unitary gas energy seems to be lower bound to neutron-matter energy

Constraints on S and L

Unitary gas:

- Gas interacting via two-body interactions with infinite scattering length and vanishing effective range
- Then, system has no scale except density, and can be described by a dimensionless parameter, ξ (Bertsch parameter)
- Details of the interaction become irrelevant (universality)
- > Experiment and theory: $\xi \approx 0.37$

S and L constraints from lower bound of neutron matter energy

Kolomeitsev, Lattimer, Ohnishi, IT, arXiv:1611.07133

Empirical observation:

Unitary gas energy seems to be lower bound to neutron-matter energy

Constraints on S and L

S and L constraints from lower bound of neutron matter energy

Put constraints on symmetry energy S and its density dependence L.

 $S_0^{\text{LB}} = 28.14 \text{ MeV}$, and $L_0 = 25.28 \text{ MeV}$.

Summary

QMC calculations of neutron matter, light nuclei, and n-alpha scattering with local chiral potentials up to N²LO including NN and 3N forces can serve as nonperturbative benchmarks.

Gezerlis, IT, Epelbaum, Gandolfi, Hebeler, Nogga, Schwenk, PRL (2013) Gezerlis, IT, Epelbaum, Freunek, Gandolfi, Hebeler, Nogga, Schwenk, PRC (2014) IT, Gandolfi, Gezerlis, Schwenk, PRC (2016) Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, PRL (2016)

- ➤ Chiral interactions at N²LO simultaneously reproduce the properties of A≤5 systems and of neutron matter, commonly used phenomenological 3N interactions fail.
- Further improvements will allow to determine neutron-matter EOS with improved uncertainties (factor of 2).
- Constraints on symmetry energy and its slope parameter from lower bound of neutron-matter energy.

Kolomeitsev, Lattimer, Ohnishi, IT, arXiv:1611.07133

Thanks

INSTITUTE for NUCLEAR THEORY

Thanks to my collaborators:

- Technische Universität Darmstadt:
 K. Hebeler, J. Lynn, A. Schwenk
- Universität Bochum: E. Epelbaum
- Los Alamos National Laboratory: J. Carlson, S. Gandolfi
- University of Guelph: A. Gezerlis
- Forschungszentrum Jülich: A. Nogga
- Matej Bel University: Evgeni Kolomeitsev
- Stony Brook: Jim Lattimer
- Yukawa Institute Kyoto: Akira Ohnishi

European Research Council Established by the European Commission

 $\mathsf{JINA-CEE}$

Thank you for your attention.